Image-Based Meta- and Mega-Analysis (IBMMA) : A Unified Framework for Large-Scale, Multi-Site, Neuroimaging Data Analysis.

The increasing scale and complexity of neuroimaging datasets aggregated from multiple study sites present substantial analytic challenges, as existing statistical analysis tools struggle to handle missing voxel-data, suffer from limited computational speed and inefficient memory allocation, and are restricted in the types of statistical designs they are able to model. We introduce Image-Based Meta- & Mega-Analysis (IBMMA), a novel software package implemented in R and Python that provides a unified framework for analyzing diverse neuroimaging features, efficiently handles large-scale datasets through parallel processing, offers flexible statistical modeling options, and properly manages missing voxel-data commonly encountered in multi-site studies. IBMMA produced stronger effect sizes and revealed findings in brain regions that traditional software overlooked due to missing voxel-data resulting in gaps in brain coverage. IBMMA has the potential to accelerate discoveries in neuroscience and enhance the clinical utility of neuroimaging findings.

Reference: 
Nick Steele, Rajendra A. Morey, Ahmed Hussain, Courtney Russell, Benjamin Suarez-Jimenez, Elena Pozzi, Hadis Jameei, Lianne Schmaal, Ilya M. Veer, Lea Waller, Neda Jahanshad, Sophia I. Thomopoulos, Lauren E. Salminen, Miranda Olff, Jessie L. Frijling, Dick J. Veltman, Saskia B.J. Koch, Laura Nawijn, Mirjam van Zuiden, Li Wang, Ye Zhu, Gen Li, Dan J. Stein, Jonathan Ipser, Yuval Neria, Xi Zhu, Orren Ravid, Sigal Zilcha-Mano, Amit Lazarov, Ashley A. Huggins, Jennifer S. Stevens, Kerry Ressler, Tanja Jovanovic, Sanne J.H. van Rooij, Negar Fani, Sven C. Mueller, Anna R. Hudson, Judith K. Daniels, Anika Sierk, Antje Manthey, Henrik Walter, Nic J.A. van der Wee, Steven J.A. van der Werff, Robert R.J.M. Vermeiren, Christian Schmahl, Julia I. Herzog, Ivan Rektor, Pavel Říha, Milissa L. Kaufman, Lauren A. M. Lebois, Justin T. Baker, Isabelle M. Rosso, Elizabeth A. Olson, Anthony King, Israel Liberzon, Michael Angstadt, Nicholas D. Davenport, Seth G. Disner, Scott R. Sponheim, Thomas Straube, David Hofmann, Guangming Lu, Rongfeng Qi, Xin Wang, Austin Kunch, Hong Xie, Yann Quidé, Wissam El-Hage, Shmuel Lissek, Hannah Berg, Steven E. Bruce, Josh Cisler, Marisa Ross, Ryan J. Herringa, Daniel W. Grupe, Jack B. Nitschke, Richard J. Davidson, Christine Larson, Terri A. deRoon-Cassini, Carissa W. Tomas, Jacklynn M. Fitzgerald, Jeremy Elman, Matthew Panizzon, Carol E. Franz, Michael J. Lyons, William S. Kremen, Brandee Feola, Jennifer U. Blackford, Bunmi O. Olatunji, Geoffrey May, Steven M. Nelson, Evan M. Gordon, Chadi G. Abdallah, Ruth Lanius, Maria Densmore, Jean Théberge, Richard W.J. Neufeld, Paul M. Thompson, Delin Sun | 2025
In: BioRxiv ; ISSN: 2692-8205
https://dx.doi.org/10.1101/2025.06.16.657725
Article-in-Press DOI: 10.1101/2025.06.16.657725
Keywords: 
Brain Imaging, Neurobiology, Posttraumatic Stress Disorder, Psychotrauma, PTSD (en), Statistical Analysis
Affiliation author(s):