Evaluating a screener to quantify PTSD risk using emergency care information : a proof of concept study

Previous work has indicated that post-traumatic stress disorder (PTSD) symptoms, measured by the Clinician-Administered PTSD Scale (CAPS) within 60 days of trauma exposure, can reliably produce likelihood estimates of chronic PTSD among trauma survivors admitted to acute care centers. Administering the CAPS is burdensome, requires skilled professionals, and relies on symptoms that are not fully expressed upon acute care admission. Predicting chronic PTSD from peritraumatic responses, which are obtainable upon acute care admission, has yielded conflicting results, hence the rationale for a stepwise screening-and-prediction practice. This work explores the ability of peritraumatic responses to produce risk likelihood estimates of early CAPS-based PTSD symptoms indicative of chronic PTSD risk. It specifically evaluates the Peritraumatic Dissociative Experiences Questionnaire (PDEQ) as a risk-likelihood estimator.
We used individual participant data (IPD) from five acute care studies that used both the PDEQ and the CAPS (n = 647). Logistic regression calculated the probability of having CAPS scores ≥ 40 between 30 and 60 days after trauma exposure across the range of initial PDEQ scores, and evaluated the added contribution of age, sex, trauma type, and prior trauma exposure. Brier scores, area under the receiver-operating characteristic curve (AUC), and the mean slope of the calibration line evaluated the accuracy and precision of the predicted probabilities.
Twenty percent of the sample had CAPS ≥ 40. PDEQ severity significantly predicted having CAPS ≥ 40 symptoms (p < 0.001). Incremental PDEQ scores produced a reliable estimator of CAPS ≥ 40 likelihood. An individual risk estimation tool incorporating PDEQ and other significant risk indicators is provided.
Peritraumatic reactions, measured here by the PDEQ, can reliably quantify the likelihood of acute PTSD symptoms predictive of chronic PTSD and requiring clinical attention. Using them as a screener in a stepwise chronic PTSD prediction strategy may reduce the burden of later CAPS-based assessments. Other peritraumatic metrics may perform similarly and their use requires similar validation.
Trial registration
Jerusalem Trauma Outreach and Prevention Study (J-TOPS): NCT00146900

Geachte bezoeker,

De informatie die u nu opvraagt, kan door psychotraumanet niet aan u worden getoond. Dit kan verschillende redenen hebben, waarvan (bescherming van het) auteursrecht de meeste voorkomende is. Wanneer het mogelijk is om u door te verwijzen naar de bron van deze informatie, dan ziet u hier onder een link naar die plek.

Als er geen link staat, kunt u contact opnemen met de bibliotheek, die u verder op weg kan helpen.

Met vriendelijke groet,
Het psychotraumanet-team.

Willem F. van der Mei, Anna C. Barbano, Andrew Ratanatharathorn, Richard A. Bryant, Douglas L. Delahanty, Terri A. de Roonassini, Betty S. Lai, Sarah R. Lowe, Yutaka J. Matsuoka, Miranda Olff, Wei Qi, Ulrich Schnyder, Soraya Seedat, Ronald C. Kessler, Karestan C. oenen, Arieh Y. Shalev & International Consortium to Predict PTSD | 2020
In: BMC Emergency Medicine, ISSN: 1471-227X | 20 | 1 | 16
Emergency Rooms, Meta Analysis, Peritraumatic Dissociation, Posttraumatic Stress Disorder, Predictors, Psychotrauma, PTSD (en), Research
Affiliation author(s):