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BASIC RESEARCH ARTICLE

Recognizing hotspots in Brief Eclectic Psychotherapy for PTSD by text and
audio mining
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and Miranda Olffb,c

aDepartment of Research Methodology, Measurement and Data Analysis, University of Twente, Enschede, Netherlands; bDepartment of
Psychiatry, Amsterdam University Medical Centres, Academic Medical Centre, Amsterdam, Netherlands; cARQ National Psychotrauma
Centre, Diemen, Netherlands; dDepartment of Languages, Literature and Communication, Utrecht University, Utrecht, Netherlands;
eDepartment of Human Media Interaction, University of Twente, Enschede, Netherlands

ABSTRACT
Background: Identifying and addressing hotspots is a key element of imaginal exposure in
Brief Eclectic Psychotherapy for PTSD (BEPP). Research shows that treatment effectiveness is
associated with focusing on these hotspots and that hotspot frequency and characteristics
may serve as indicators for treatment success.
Objective: This study aims to develop a model to automatically recognize hotspots based
on text and speech features, which might be an efficient way to track patient progress and
predict treatment efficacy.
Method: A multimodal supervised classification model was developed based on analog tape
recordings and transcripts of imaginal exposure sessions of 10 successful and 10 non-
successful treatment completers. Data mining and machine learning techniques were used
to extract and select text (e.g. words and word combinations) and speech (e.g. speech rate,
pauses between words) features that distinguish between ‘hotspot’ (N = 37) and ‘non-
hotspot’ (N = 45) phases during exposure sessions.
Results: The developed model resulted in a high training performance (mean F1-score of 0.76)
but a low testing performance (mean F1-score = 0.52). This shows that the selected text and
speech features could clearly distinguish between hotspots and non-hotspots in the current
data set, but will probably not recognize hotspots from new input data very well.
Conclusions: In order to improve the recognition of new hotspots, the described metho-
dology should be applied to a larger, higher quality (digitally recorded) data set. As such this
study should be seen mainly as a proof of concept, demonstrating the possible application
and contribution of automatic text and audio analysis to therapy process research in PTSD
and mental health research in general.

Reconociendo los puntos críticos (hotspots) en la psicoterapia ecléctica
breve para tept por minería de texto y audio
Antecedentes:La identificación y el abordaje de los puntos críticos (hotspots en inglés) es
un elemento clave para exposición imaginaria en la Psicoterapia Ecléctica Breve para TEPT
(BEPP por sus siglas en inglés). La investigación muestra que la efectividad del tratamiento
se asocia con la focalización en estos puntos críticosy que la frecuencia y características de
los puntos críticos podría servir de indicador para el éxito terapéutico.
Objetivo: Este estudio tiene como objetivo desarrollar un modelo para reconocer
automáticamente los puntos críticos basados en características de texto y discurso, lo que
podría ser una forma eficiente de seguir los progresos del paciente y predecir la eficacia del
tratamiento.
Metodo: Se desarrolló un modelo de clasificación supervisada multimodal basado en
grabaciones y transcripciones de cintas analógicas de sesiones de exposición imaginaria
de diez de tratamiento exitosos y diez no exitosos. Se usaron técnicas de minería de datos
y técnicas de aprendizaje automático para extraer y seleccionar las características de texto
(ej., palabras y combinaciones de palabras) y discurso (ej., velocidad del discurso, pausas
entre las palabras) que distinguen entre las fases de ‘puntos críticos’ (N= 37) y ‘ puntos no
críticos’ (N= 45) durante las sesiones de exposición.
Resultados: El modelo desarrollado resultó en un alto rendimiento de entrenamiento (puntaje
F1 promedio de 0.76) pero un bajo rendimiento de prueba (puntaje F1 promedio = 0.52). Esto
muestra que las características de los textos y discursos seleccionados podrían distinguir
claramente entre puntos críticos y puntos no críticos en el conjunto de datos actual, pero
probablemente no reconocerá muy bien los puntos críticos de nuevos datos de entrada.
Conclusiones: Para mejorar el reconocimiento de nuevos puntos críticos, la metodología
descrita debería ser aplicada a un conjunto de datos más grande y de mejor alta calidad
(grabado digital). Como tal, este estudio debe verse principalmente como una prueba de
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concepto, demostrando la posible aplicación y contribución del análisis automático de texto
y audio para la investigación del proceso terapéutico en TEPT e investigación en salud
mental en general.

通过文本和音频挖掘识别PTSD的简短折衷心理疗法中的热点

背景:在PTSD的简短折衷心理疗法 (BEPP) 中, 识别和解决热点 (hotspot) 是想象暴露法的关
键要素。研究表明, 治疗效果与关注这些热点有关, 并且热点频率和特征可以作为治疗成
功的指标。
目标:本研究旨在开发一种基于文本和语音特征来自动识别热点的模型, 这可能是追踪患者
进展和预测治疗效果的有效方法。
方法:基于对十个成功和十个不成功治疗完成者的想象暴露会话的模拟磁带录音和笔录, 建
立了多模式监督分类模型。数据挖掘和机器学习技术用于在暴露会话中提取和选择区分
‘热点’ (N = 37) 和‘非热点’ (N = 45) 阶段的文本 (例如单词和单词组合) 和语音 (例如语速, 单
词间的停顿) 。
结果:开发的模型训练成绩很高 (平均F1得分为0.76), 但测试性能较低 (平均F1得分为0.52) 。
这表明所选的文本和语音特征可以清楚地区分此数据集的热点和非热点, 但可能无法很好
地识别新输入数据中的热点。
结论:为了提高对新热点的识别, 应将所描述的方法应用于更大, 更高质量 (数字记录) 的数
据集。因此, 本研究应主要被视为概念的证明, 证明自动文本和音频分析在PTSD的治疗过
程研究和一般心理健康研究中可能的应用和贡献。

1. Introduction

Posttraumatic stress disorder (PTSD) is a mental health
disorder that can develop after experiencing or witnes-
sing a traumatic event (American Psychiatric
Association, 2013). The lifetime prevalence rate of
PTSD in the general population is 7.4% (De Vries &
Olff, 2009; Kessler et al., 2017). Several effective treat-
ments for PTSD exist (Bisson et al., 2019), examples of
which are trauma-focused cognitive behavioural therapy
(CBT; Ehlers & Clark, 2000) and eye movement desensi-
tization and reprocessing (EMDR; Shapiro, 2001). Of all
effective psychotherapies, one of the ingredients they
have in common is exposure to trauma (Olff et al., in
press; Schnyder et al., 2015). Despite its efficacy, there is
still a considerable proportion of patients that does not
(sufficiently) respond to this form of trauma-focused
therapy. For example, in their meta-analysis of psy-
chotherapy for PTSD, Bradley, Greene, Russ, Dutra,
and Westen (2005) report mean improvement rates of
37.6% and 47.4%, among CBT intent-to-treat patients
and treatment completers, respectively.

Grey, Young, and Holmes (2002) argue that the
effectiveness of PTSD treatment can significantly
improve by focusing on hotspots. This is in line with
the results of Nijdam, Baas, Olff, and Gersons (2013),
who showed that hotspots were more frequently
addressed in successful than in non-successful treat-
ments. Hotspots, the moments of traumatic experi-
ences with the highest emotional impact, have been
an important topic of research in the past decades. For
example, Ehlers, Hackmann, and Michael (2004) and
Ehlers, Clark, Hackmann, McManus, and Fennell
(2005) found that imaginal exposure during trauma-
focused CBT should focus on addressing and changing
the meaning of hotspots as this could lead to greater
PTSD symptom reduction. The importance of hot-
spots in psychotherapy was also highlighted in earlier

studies that argued that hotspots need to be addressed
to ensure habituation (Richards & Lovell, 1999) or to
identify deeper meanings (Ehlers & Clark, 2000).

A form of trauma-focused CBT that focuses on the
identification and addressing of hotspots is Brief
Eclectic Psychotherapy for PTSD (BEPP; Gersons,
Carlier, Lamberts, & Van Der Kolk, 2000). Through
imaginal exposure, the patient is led slowly through
the traumatic situation until the worst moment (the
hotspot) is reached (Grey & Holmes, 2008). Hotspots
are addressed by encouraging the patient to describe
and remember the exact details of the most frighten-
ing or emotional moment, for example, by asking
about sounds, smells, weather, or surroundings. By
helping the patient to remember the details, cues to
new aspects and details of the event can come to
mind, enabling the patient to relive the situation as
vividly as possible (Gersons, Meewisse, Nijdam, &
Olff, 2011). When the hotspot is sufficiently covered,
the trauma narrative can be continued until (over the
course of several exposure sessions) all the hotspots
have been addressed. The imaginal exposure phase is
completed when all hotspots are addressed and the
emotions associated with the traumatic event are
levelled down sufficiently (Nijdam et al., 2013).

With regard to the content of hotspots, previous
studies focused on the presence of emotions (Grey,
Holmes, & Brewin, 2001; Grey et al., 2002) and cog-
nitions (Grey & Holmes, 2008; Holmes, Grey, &
Young, 2005), which showed that especially anxiety,
helplessness, horror, anger, sadness, shame, and guilt
frequently occurred in hotspots. In addition, Grey
et al. (2002) found that hotspots are characterized
by subtle textual changes, which may guide the thera-
pist in the identification of emotional hotspots. An
example of a study assessing textual differences
within trauma narratives is that of Jelinek et al.
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(2010), who studied the organization and content of
the ‘worst moments’ of traumatic memories by ana-
lysing the degree of disorganization, emotions, and
speaking style. They found that these moments
showed different characteristics with regard to the
organization than the rest of the narrative.

To obtain a deeper knowledge and understanding
of trauma treatment and specifically hotspots, more
in-depth, large-scale analysis of treatment and hot-
spot content is required. Until now, treatment con-
tent has mainly been studied by manually coding the
occurrence of a predefined set of characteristics
within therapy session recordings or transcripts ret-
rospectively. Due to the time-consuming nature of
such analyses, most of these studies focus on one
specific construct, such as text cohesion (Foa,
Molnar, & Cashman, 1995), complexity (Amir,
Stafford, Freshman, & Foa, 1998), or dissociation
(Zoellner, Alvarez-Conrad, & Foa, 2002). It is sug-
gested that future studies should focus on assessing
the relationship between multiple constructs under-
lying traumatic narratives instead of studying every
construct separately (Amir et al., 1998).

An effective way to study multiple constructs and
variables at once is to analyse treatment sessions using
automatic text and audio analyses. Text analysis is fre-
quently used in PTSD research, as word use and lin-
guistic features proved to be indicative of people’s
mental, social, and sometimes physical state, and their
defensive operations (Nelson & Horowitz, 2010;
Pennebaker, Mehl, & Niederhoffer, 2003).Word counts
have been used to study trauma narrative content in
relation to PTSD symptom severity (e.g. Jelinek et al.,
2010; Pennebaker, 1993) and insight in the linguistic
elements present within trauma narratives could lead to
improved PTSD treatment (Alvarez-Conrad, Zoellner,
& Foa, 2001). For example, specific linguistic features
such as cognitive processing words (Alvarez-Conrad
et al., 2001; D’Andrea, Chiu, Casas, & Deldin, 2012;
Pennebaker, Francis, & Booth, 2001), emotion words
(Alvarez-Conrad et al., 2001; Pennebaker et al., 2001),
words related to insight (Pennebaker et al., 2001),
reflection (D’Andrea et al., 2012), causation (Boals &
Klein, 2005), and affection and death (Alvarez-Conrad
et al., 2001) have been used to predict improvements in
post-treatment PTSD symptoms, perceived physical
health, and personal functioning. Because mood and
emotions are found to influence speaking behaviour
and speech sound characteristics, audio signal analysis
is regularly applied in psychiatric studies as well, for
example, to predict recovery time in depression (Kuny
& Stassen, 1993) or to recognize psychosis development
in high-risk youths (Bedi et al., 2015).

Text and speech features can be used to identify
and study specific concepts on a large scale, in
a transparent and uniform fashion, over a long period
of time. For the automatic recognition or prediction

of pre-defined concepts, supervised classification is
generally used. Supervised classification is a data
mining application in which objects (e.g. texts or
audio signals) are assigned to a set of predefined
class labels using a classification model based on
labelled training samples (Bird, Klein, & Loper,
2009). Supervised classification based on text features
has been used, for example, to screen forum posts for
PTSD (He, Veldkamp, & de Vries, 2012) or to predict
treatment adherence for schizophrenia patients
(Howes, Purver, McCabe, Healey, & Lavelle, 2012),
whereas speech features have been used to classify
distress in PTSD patients (Van Den Broek, Van Der
Sluis, & Dijkstra, 2009). Though most studies use
either text or audio analysis, Schuller, Villar, Rigoll,
and Lang (2005) and Forbes-Riley and Litman (2004)
found that models based on multimodal feature sets
outperformed models based on either acoustic or
linguistic features alone (e.g. in emotion classifica-
tion), as multimodal sets provide a broader and
more complete picture of one’s (emotional) state
(Bhaskar, Sruthi, & Nedungadi, 2015).

This study aims to develop a multimodal supervised
classificationmodel to automatically recognize hotspots
based on text and speech features extracted from tape
recordings and transcripts of imaginal exposure ses-
sions of successful and non-successful treatment com-
pleters. Automatic hotspot recognition can provide
clinicians with insight in the occurrence and character-
istics of hotspots during their treatments, which may
assist them in offering amore effective intervention.We
hypothesized that a combination of text and speech
features extracted from patient speech could be used
to develop a supervised classification model to automa-
tically distinguish between hotspot and non-hotspot
phases during imaginal exposure sessions. Based on
the formal hotspot characteristics and previous research
on hotspots and CBT sessions, we identified nine con-
structs (affect, emotions, cognitions, dissociation,
avoidance, cohesion, organization, fragmentation, and
complexity, further described in the Methods section)
that we expected to differ between hotspots and non-
hotspots. Each construct was operationalized through
a number of text and speech characteristics that were
captured using a large range of features extracted from
CBT session transcripts and recordings.

2. Methods

2.1. Sample and data set

We used data of patients undergoing Brief Eclectic
Psychotherapy for PTSD (BEPP; Gersons et al., 2000).
To develop the hotspot classification model, an existing
expert-annotated data set consisting of imaginal expo-
sure session recordings was used in which hotspots and
their characteristics were coded. This data set consisted
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of analog cassette tape recordings of 45 PTSD patients
and was collected for a previous study by Nijdam et al.
(2013), who investigated differences in hotspots between
successful and unsuccessful BEPP trauma-focused psy-
chotherapies. They analysed session recordings in which
imaginal exposure was present for 20 of the 45 patients
(the 10 most and the 10 least successful treatment com-
pleters). The sample consisted of twelve female and eight
male adults with a mean age of 39.60 (SD = 10.98) and
different ethnic backgrounds (mainly Dutch, N = 15, but
also Indonesian, Surinamese, Aruban, and Bosnian). The
types of trauma the patients experienced included assault
(N = 13), disaster (N = 2), sexual assault (N = 1), accident
(N = 1), war-related (N = 1), and other (N = 2).

Nijdam et al. (2013) coded the frequency of hotspots,
their characteristics (interrater reliability K = 0.86),
emotions (interrater reliability K = 0.81), and cogni-
tions (interrater reliability K = 0.85) for 102 recordings
based on the Hotspot Identification Manual, an adapta-
tion of the Hotspots Manual of Holmes and Grey
(2002), developed by Nijdam and colleagues to enable
retrospective coding based on audio recordings. Of the
102 coded sessions, recordings of insufficient quality for
transcription (mainly due to heavy background noise,
N = 29) or that did not contain any hotspots (N = 29)
were excluded in the present study. From the remaining
44 recordings one session was selected per patient. This
was the session in which the most hotspots occurred. In
case there were multiple sessions with the same number
of hotspots, the session occurring earliest in treatment
was used. In total the 20 selected sessions contained 37

hotspots; seven recordings with three hotspots, three
recordings with two hotspots, and ten recordings with
one hotspot (see Figure 1).

2.1.1. Data preparation
The data consisted of tape recordings (mono channel) of
complete imaginal exposure sessions, which were con-
verted to WAV format (16-bit, 16 kHz, mono) using the
digital audio editor Audacity® version 2.0.5 (Audacity
Team, 2013). The recordings were over 10-years old at
the time of digitization, which negatively influenced the
sound quality. Each recording contained a complete ima-
ginal exposure session consisting of four elements
(Gersons et al., 2011):

● Discussion: discussion of the previous session,
the course of the PTSD symptoms, and the
structure and content of the current session.

● Relaxation exercises: repeatedly tensing and relax-
ing muscle groups to enable the patient to focus on
the traumatic event and go back to the situation.

● Exposure: for the first exposure session, the
patient is brought back to the day of the trau-
matic event and is asked to give a detailed
account of the situation prior to the event and
the event itself. In subsequent sessions, exposure
starts where it left off in the previous session.

● Discussion: discussion of the exposure experi-
enced so far and explanation of the content and
structure of the following session.

Since we were only interested in the imaginal
exposure phase, the initial discussion of the previous

Figure 1. Data selection chart for available session recordings.
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session, relaxation, and concluding discussion were
removed, leaving only the exposure phase, usually
about 15–20 min per recording, for analysis.

Because the audio was of poor quality and tran-
scriptions needed to be as detailed as possible, auto-
matic speech recognition (ASR) was not applicable.
The recordings were therefore transcribed and anno-
tated by the first author, who was blind to therapeutic
outcome. The transcriptions are verbatim, meaning
that every recorded word, including unfinished words
(stammering), non-fluencies (e.g. uh, hmm), and
forms of backchanneling (e.g. uhhu, ok), was tran-
scribed. Background noise was removed only if
necessary for transcription, using the noise reduction
function implemented in Audacity® version 2.0.5.
However, for some sessions small parts of the speech
could still not be transcribed due to the amount of
noise, heavy emotions, or weakness of the speech
signal. These parts are coded as ‘inaudible’, including
start and end time. The exact start and end time of
each hotspot were coded by the first two authors.

The transcriptions were then converted to the (C)
XML file format for annotating transcriptions to enable
parsing (easily separating patient from therapist speech
and hotspot from non-hotspot phases for the text analy-
sis) and to link the transcribed text to the digital audio
recordings. Linking of text and audio datawas done using
forced alignment within the WebMaus Pipeline version
2.25 (Kisler, Reichel, & Schiel, 2017), including the
Chunker function by Poerner and Schiel (2016). The
resulting TextGrid files were then complemented with
interval tiers; connected sequences of labelled intervals
annotating hotspots, the speaker turns, and silences,
using Praat version 6.0.4.3 (Boersma & Weenink, 2019).
This way the transcriptions and recordings were con-
verted to input formats suitable for the multimodal clas-
sification pipeline.

2.1.2. Identifying hotspots
The Hotspots Manual of Holmes and Grey (2002), and
succeeding research on hotspots by Holmes et al. (2005)
and Grey and Holmes (2008), was used to identify hot-
spots: 1) the moment is defined by the patient as the
‘worst moment’; 2) the moment was identified as
a hotspot in a previous session; 3) an audible change in
affect; 4) the patient changes frompresent to past tense; 5)
the patient changes from first to third person; 6) the
patient is ‘whizzing through’; 7) the patient cannot
remember details of the moment; 8) the patient is dis-
sociating; or 9) the moment is mentioned by the patient
to correspond to an intrusion.

2.2. Operational constructs for automatic
recognition

We distinguished nine constructs underlying hotspots
that could be used in their automatic recognition. Five

of these are based on the formal hotspot characteristics;
affect, emotions, cognitions, dissociation, and avoid-
ance. The remaining four (cohesion, organization, frag-
mentation, and complexity) were selected based on
previous research on CBT sessions. Although until
now, except for organization, these additional con-
structs were mainly studied with regard to complete
trauma narratives and not to specific parts such as hot-
spots, we expected them to be useful for automatic
hotspot recognition as they do play a part in the emo-
tional processing of traumatic events (Amir et al., 1998).

Each construct is operationalized through vari-
ables that can be measured based on combinations
of either text, speech, or text and speech features.
Since the aim is to recognize hotspots automatically,
we only used those variables that could be measured
based on automatically extracted (i.e. without the
need for manual coding) text and speech features.
The features used to capture each construct are
described in sections 2.3.2 Text feature extraction
and 2.3.3 Speech feature extraction. More feature
details, including examples and equations, can be
found in Appendix A and Appendix B. The operatio-
nalization of each construct and the related features
are shown schematically in Figure 2 and elaborated
upon in Appendix C.

2.2.1. Affect
According to Grey et al. (2002) a visible change in
affect (e.g. bursting into tears, turning red, shaking,
or sweating) is the most obvious way to identify
a hotspot. When working with audio files, audible
cues can be used instead of visible cues, as in
Nijdam et al. (2013), who showed that change in
affect remains a strong identifier even without the
visible aspect. Juslin and Scherer (2005) define affect
as ‘a general, umbrella term that subsumes a variety of
phenomena such as emotion, stress, mood, interperso-
nal stance, and affective personality traits’ [p. 69].

2.2.2. Emotions
Emotion is one of the affective phenomena listed by
Juslin and Scherer (2005), and as such the constructs
affect and emotions are closely related. Holmes et al.
(2005) distinguished 11 emotion categories based on
emotion words that occurred during hotspots: fear,
helplessness, anger, sadness, surprise, disgust, disso-
ciation, happiness, shame, guilt, and horror. Of these,
especially anxiety, helplessness, and horror are
deemed important, as these were specified explicitly
under PTSD criterion A2 of the DSM-4-TR
(American Psychiatric Association, 2013), although
this criterion was removed from the most recent
version, the DSM-5 (American Psychiatric
Association, 2000). We also expected higher occur-
rences of the emotions anger, sadness, shame, disgust,
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and guilt, as these were found to be often related to
hotspots (Grey et al., 2001, 2002; Holmes et al., 2005).

2.2.3. Cognitions
In addition to emotion categories, Holmes et al.
(2005) distinguished seven cognitive themes that can
characterize hotspots: uncertain threat, general threat
of injury and death, control and reasoning, conse-
quences, abandonment, esteem, and cognitive avoid-
ance. Cognitive themes of psychological threat (sense
of self) were found to appear more in hotspots than
those of physical threat (physical integrity) (Grey &
Holmes, 2008; Holmes et al., 2005).

2.2.4. Dissociation
Hotspots are also identified by changes in speaking
style. During imaginal exposure, patients are asked to
describe the past event as if it were happening now,
in the first person present tense. Patients may dis-
sociate during hotspots by changing from present to
past tense or from first to third person (Grey et al.,
2002). This altered or unreal perception of the trau-
matic event may indicate that peritraumatic dissocia-
tion occurred during or directly after the traumatic
experience.

2.2.5. Avoidance
Other hotspot characteristics related to speaking style
described by Grey et al. (2002) are ‘whizzing through’
(rushing through the main event giving minimal
details, while extensively describing the build-up
and aftermath) and the patient declaring he or she

is unable to remember details of the moment. These
characteristics reflect (non-conscious) avoidance.

2.2.6. Cohesion
Narrative cohesion focuses on the occurrence of
explicit cues within the text that enable the reader
(or listener) to make connections within or between
sentences or clauses (Crossley, Kyle, & McNamara,
2016). Previous studies found cohesion to be related
to the level of intrusive symptoms in children
(O’Kearny, Speyer, & Kenardy, 2007) and trauma-
related avoidance (O’Kearney, Hunt, & Wallace,
2011), which both are hotspot characteristics.

2.2.7. Organization
Trauma survivors with PTSD are found to produce
more disorganized trauma narratives than trauma
survivors without PTSD (Halligan, Michael, Clark,
& Ehlers, 2003; Jones, Harvey, & Brewin, 2007). The
(dis)organization of the ‘worst moments’ (hotspots)
in traumatic memories was previously studied based
on text features by Jelinek et al. (2010).

2.2.8. Fragmentation
Foa et al. (1995) suggest that trauma memories are
more fragmented (i.e. lacking flow) for trauma survi-
vors with PTSD, because information could not be
adequately processed and encoded under stressful
conditions. They found a significant correlation
between fragmentation and PTSD symptoms over
treatment.

Figure 2. Operationalization scheme for constructs underlying hotspots (red), related variables (blue), and extracted features
(green). For each node is indicated whether it is expected to increase (+), decrease (-), change in both directions (~), or either
direction (?).
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2.2.9. Complexity
Amir et al. (1998) found that narrative complexity
correlated negatively with PTSD severity three
months after the trauma. They found that patients
who wrote more simplistic narratives showed more
severe PTSD than patients who wrote more complex
narratives. However, later studies concluded that
found effects could also be due to differences in
writing skill and cognitive ability (see Gray &
Lombardo, 2001). Complexity may relate to the hot-
spot characteristic ‘whizzing through’, due to which
hotspot moments are described in a more simplistic
fashion and in less detail. Also, hotspot moments may
be narrated in a more fragmented way due to changes
in affect.

2.3. Classification pipeline

The development of a new classification model
involves two phases; a training phase and
a prediction phase. In the training phase, information
is extracted from each object following a range of
preprocessing and feature extraction steps, resulting
in labelled feature sets. A machine learning algorithm
uses those labelled feature sets to learn and select the
most discriminative text and speech features for the
‘hotspot’ versus the ‘non-hotspot’ phases.

In the prediction phase, the classifier uses those
features to identify hotspots from new imaginal expo-
sure session recordings and transcripts (for more on
the development of classification models, see
Wiegersma, Van Noije, Sools, & Veldkamp, n.d.).
This sequence of steps, in which the output of each
step is the input for the next, is called a pipeline (see
Figure 3).

The preparation, preprocessing and feature extrac-
tion steps were done separately for text and speech
features because they require different techniques.
Feature selection and machine learning were applied
to the combined, multimodal feature sets. Text

preprocessing and feature extraction was done in
Python 3.7.2 (Python Software Foundation, 2019)
using the Natural Language Toolkit (NLTK 3.4;
NLTK Project, 2019) and Python’s Textstat package
(version 0.5.4; Bansal & Aggarwal, 2018), and in
LIWC using the Dutch LIWC dictionary and the
NRC emotion lexicon. Audio preprocessing and fea-
ture extraction were done using Audacity® version
2.0.5, WebMaus version 2.25, and Praat version
6.0.4.3. Conversion of the text transcripts from plain
text files to parsable and linkable file formats was
done using custom XML and CXML converters
developed by one of the authors (available upon
request). For feature selection and machine learning,
the Scikit-learn library (Pedregosa et al., 2011) ver-
sion 0.20.2 was used.

2.3.1. Preprocessing
The text and audio analysis focused on patient speech
only. The textual input for the classification pipeline
consisted of plain text files containing the tran-
scribed, anonymized patient speech cut into ‘hotspot’
and ‘non-hotspot’ segments (parts in the exposure
phase preceding or following a hotspot). In total the
transcripts were split into 37 hotspot segments and 45
non-hotspot segments. To analyse the text on word
level, separate words were extracted from the tran-
scripts using the word tokenizer for Dutch imple-
mented in NLTK (see Perkins, 2014, for more on
tokenization). All words were normalized by remov-
ing punctuation, accents, and capital letters. For the
N-gram extraction, each word except for stop words
was stemmed (reduced to its base form, see Jurafsky
& Martin, 2009, for more on stemming) using
a standard Dutch Snowball stemmer included in
NLTK (Porter, 2001). For the tagger-based feature
extraction and the overall text characteristics the
unstemmed input text was used.

For the audio analysis, the prepared TextGrid files
(see 2.1.1 Data Preparation) were directly processed

Figure 3. Multimodal supervised classification pipeline.
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in Praat, selecting the audio signals for patient-speech
only and distinguishing between hotspot and non-
hotspot phases within the annotated interval tiers.
In line with Jurafsky and Martin (2009), we used
utterances instead of sentences because we work
with a corpus of transcribed speech that does not
contain punctuation such as original text corpora.
Utterances, which can be words, phrases or clauses,
were identified based on Tanaka, Sakti, Neubig, Toda,
and Nakamura (2014), in which utterances are sepa-
rated based on a pause in speech longer than 1 s.

2.3.2. Text feature extraction
Text features capture what is being said, focusing on
the textual content. Text content can be examined on
word or phrase level by extracting unigrams,
N-grams, or N-multigrams (single words, phrases,
or variable-length word combinations). With small
samples, frequencies of individual words or phrases
may be too low to recognize specific patterns. In that
case, it is useful to analyse words belonging to parti-
cular grammatical or lexical categories by assigning
labels (tags) to each word using parts-of-speech
(POS), lexicon-based, or custom taggers.

In general, grammatical POS tags such as personal
pronouns and verb tense are thought to give infor-
mation about one’s (temporal) focus and psychologi-
cal distance towards a situation or event, which may
provide cues on thought processes, priorities, and
intentions (Tausczik & Pennebaker, 2010). Tags
regarding verb tense are also considered useful in
assessing memory (dis)organization and time per-
spective (Jelinek et al., 2010). Previous studies in
which POS tags were used showed that tags such as
first-person singular pronouns correlated positively
with psychological distress (Rude, Gortner, &
Pennebaker, 2004; Wolf, Sedway, Bulik, & Kordy,
2007). In addition, trauma survivors that were sensi-
tive to developing posttraumatic stress symptoms
were found to use more first-person plural than first-
person singular pronouns (Chung & Pennebaker,
2007; Stone & Pennebaker, 2002).

A widely used lexicon-based tagger is LIWC,
which assigns words to categories related to linguistic
elements, emotions, and cognitive processes, and
counts their relative frequencies. Since hotspots are
the most emotionally distressing moments of trauma
(Nijdam et al., 2013), special attention was paid to the
emotions present in the transcripts. Although LIWC
extracts several emotion categories (anxiety, anger,
and sadness), more extensive insight in the emotions
was gained using a General Purpose Emotion Lexicon
(GPEL), which is considered to significantly improve
emotion classification (Aman & Szpakowicz, 2007).

Finally, text characteristics and statistics were
extracted to analyse textual differences on the general
level. Previous studies showed that these characteristics

can be used to detect emotions (Lee & Narayanan,
2005) or as indicators for physical symptoms and dis-
comfort (Alvarez-Conrad et al., 2001).

The text features were extracted over the complete
hotspot or non-hotspot phase, extracting all text fea-
tures for each separate hotspot and non-hotspot seg-
ment. To prevent bias towards longer text
documents, the extracted N-grams were weighted by
normalized term frequency (tf, occurrence counts
normalized by document length, see more in
Forman, 2003) or term frequency-inverse document
frequency (tf-idf, see more in Jurafsky & Martin,
2009), which are the most commonly used feature
weights. The occurrence frequencies returned by the
taggers were normalized by document length.
A detailed description of all used text features, their
relation to the operational constructs, and the extrac-
tion process can be found in Appendix A.

2.3.3. Speech feature extraction
In addition to what is being said, which is captured
by the text features, it is of interest how things are
said, since one’s manner of speaking can convey signs
of emotions or stress (Lefter, Rothkrantz, Van
Leeuwen, & Wiggers, 2011; Scherer, 2003). Some
emotions, especially emotions that are high in arou-
sal, such as anger and fear, can be better identified
from spoken than from written data (e.g. Truong &
Raaijmakers, 2008).

The study of speech sounds is called phonetics.
Phonetic studies can focus on how sounds are pro-
duced (articulatory phonetics), how sounds are per-
ceived (auditory phonetics), or how sounds are
transmitted (acoustic phonetics) (Ashby, 2013). The
latter concentrates specifically on the acoustic char-
acteristics (or physical properties) of speech, such as
frequency, amplitude, and duration, which can be
objectively measured by analysing acoustic wave-
forms. A waveform is a graphical representation of
a sound wave, in which the variation in air pressure
(y-axis) involved with the production of sound is
plotted over time (x-axis) (Jurafsky & Martin, 2009).
It is generally assumed that one’s affective state is
reflected by objectively measurable voice cues. As
such, acoustic phonetics are considered the most
promising phonetic features in examining affect and
emotion (Juslin & Scherer, 2005).

Lefter et al. (2011) divide acoustic features into
prosodic, spectral, and voice quality features. Studies
in which the identification of emotions or affective
state plays a role mostly depend on prosodic features.
Prosody refers to a collection of acoustic features that
concern intonation-related (pitch), loudness-related
(intensity), and tempo-related (e.g. durational
aspects, speaking rate) features (Jurafsky & Martin,
2009). This can closely contribute to meaning and
may reveal information normally not captured by
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textual features, such as emotional state or attitude
(Wilson & Wharton, 2006).

Prosodic features generally cover speech units larger
than one segment, such as syllables, words, or speaker
turns, and are therefore also termed suprasegmentals
(Jurafsky & Martin, 2009). The suprasegmentals pitch,
loudness, and duration (tempo and pause) are among the
most used features in the phonetic study of prosody (see,
e.g. the prosodic frameworks of Ladd & Cutler, 1983;
Roach, 2000; Schoentgen, 2006). Several recent clinical
studies used suprasegmental features for the diagnosis of
a range of psychological disorders (Scherer et al., 2013),
or specific disorders such as PTSD (Vergyri et al., 2015)
and dementia (Fraser et al., 2014; Jarrold et al., 2014).
Other purposes for which suprasegmentals have been
used include identifying indicators for PTSD therapy
progress (Van Den Broek et al., 2009) and assessing
depression severity during therapeutic intervention
(Lamers, De Jong, Truong, Steunenberg, & Westerhof,
2014).

In addition to prosodic features, spectral features
such as Mel-frequency cepstral coefficients (MFCCs)
are commonly used in emotion detection as these are
affected by emotional arousal (Lefter et al., 2011).
Voice quality features such as high-frequency energy
(HF) are found to be strongly related to emotions as
well. Apart from neutral, voice qualities can be, for
example, breathy, creaky, harsh, tense, or whispery.
Finally, overall speaker turn statistics (e.g. turn
length, the number of utterances per turn) were
extracted as these can gauge language strength (pov-
erty of speech) and structural organization (Orimaye
et al., 2014).

The audio data were analysed based on the prosodic
features pitch, loudness, and duration, which are the
most commonly used voice cues (Juslin & Scherer,

2005), acoustic parameters related to spectral and voice
quality features, and turn statistics. The prosodic, voice
quality, and general features were extracted at speaker
turn and utterance level, the spectral features at the frame
level. In three segments not all speech features could be
extracted at the patient level because these segments
contained no or only one voiced segment, due to which
no SDs could be calculated for the concerning speech
features. For thesemissing values, overall averages for the
concerning classes (hotspot or non-hotspot) were
imputed. More information on the used speech features,
their relation to the operational constructs, and the
extraction process is given in Appendix B.

2.3.4. Feature union
Table 1 shows all extracted text and speech features.
These features consist of a mixture of scales and quan-
tities (e.g. normalized term and category frequencies,
overall text statistics, mean amplitude values, and dura-
tion measures). Feature rescaling was done to make
sure all input features have the same scale. This is
preferred for many machine learning applications, to
prevent features measured in greater numeric ranges
from dominating features measured in smaller ranges.
As such, each text and speech feature was rescaled to the
[−1, +1] range, as proposed by Hsu, Chang, and Lin
(2003), so that each feature’s maximal absolute value is
equal to one (see Figure 4). This same scaling method is
later applied to rescale the features in the test set.

2.3.5. Feature selection
The most informative features are selected using
Pearson’s chi-squared (χ2) test, an effective feature selec-
tion metric (Yang & Pedersen, 1997) often used in text
classification tasks. A more thorough explanation of χ2

feature selection can be found in Oakes et al. (2001) or

Table 1. Feature overview.
Feature Description

N-grams Text representation schemes such as the bag-of-words model for unigrams (single words) or language-model based
schemes like N-grams or N-multigrams.

POS tags Grammatical tags that classify words in their ‘parts-of-speech’ and assign a label (tag) from a collection of tags (the
tagset)a.

LIWC categories Lexicon-based tags captured by LIWCb, which categorizes words as linguistic elements, emotions, and cognitive processes.
NRC emotion categories Eight emotions and two sentiment categories captured using the general purpose NRC emotion lexiconc.
Custom tags Custom tags are used to tag words or word patterns (e.g. specific expressions) in the transcripts that met a specified set of

words or phrases.
Text characteristics General descriptive features that capture information on the overall text structure and general characteristics.
Pitch Perceived pitch is objectively measured by its acoustic correlate, fundamental frequency (F0)d.
Loudness Perceived loudness is gauged by speech intensity, which objectively measures the energy in the acoustic signal.
Duration Duration covers the temporal aspects of speech, which are tempo (speaking rate) and pause.
Spectral features Frequency based features that represent the different frequencies (called ‘spectrum’) that together make up the acoustic

waveforme.
Voice quality features Perceived voice quality is measured by high-frequency energy (HF); the relative proportion of energy in an acoustic signal

above versus below a specific frequency, and formant frequenciesd.
Turn statistics General overall speech features that gauge language strength (poverty of speech) and structural organizationf.

More details are provided in Appendix A and Appendix B.
aBird et al. (2009)
bLinguistic Inquiry and Word Count program, Pennebaker et al. (2001)
cNRC emotion Mohammad and Turney (2010, 2013)
dJuslin and Scherer (2005)
eJurafsky and Martin (2009)
fOrimaye, Wong, and Golden (2014).
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Manning, Raghavan, and Schütze (2008). The χ2-test
compares the observed and expected feature occurrences
in the hotspot versus non-hotspot phases. All features are
then ranked based on their χ2-scores and the k features
with the highest χ2-scores are selected for the final classi-
fication model (see Wiegersma et al., n.d., for a complete
description of the process).

2.3.6. Excluded features
Some state that stop words should not be included in
the classification model, because these words do not
add to the meaning of text (Jurafsky & Martin, 2009;
Perkins, 2014). Other studies found that stop words
such as particles and pronouns may indicate health
improvements (Campbell & Pennebaker, 2003). Since
we expected particles and pronouns to be related to
the construct fragmentation, we think stop words
should not simply be excluded without further inves-
tigation, even if some (such as particles and pro-
nouns) are also captured by the POS tagger.

To avoid needlessly large feature sets, other words that
were considered for exclusionwerewords that only occur
in very few documents (Joachims, 1998). This was
assessed through minimal document frequency; the
minimal number of different training documents
a word occurs in.

2.3.7. Machine learning algorithm
The extracted text and speech feature sets were used to
train a Support Vector Machine (SVM; Vapnik, 1995).
SVMs are found to be among the best performing, most
robust classification algorithms that can deal well with
high-dimensional or imbalanced data sets (Joachims,
1998). We used the ‘C-Support Vector Classifier’ (SVC)
with a linear kernel, implemented in Scikit-learn’s
LIBSVM library (Chang & Lin, 2011). Two

hyperparameters needed to be set; the kernel parameter
γ, which we set to linear as is commonly done in text
classification tasks, and the regularization parameter C,
for which we compared different values in the parameter
grid search.

Our classification task was a two-class problem; we
wanted to distinguish hotspot phases from non-
hotspot phases based on patient speech, defining hot-
spot phases as the positive class. To compensate for
possible class imbalance we balanced class weights to
be inversely proportional to the class sizes within the
total data set, as in King and Zeng (2001).

2.3.8. Classification performance
In the training phase, the most informative features
were extracted and selected for the final classification
model. In the prediction phase, the occurrences of
those selected features were used to predict a class
label for each new input file. The model’s classifica-
tion performance was measured by comparing the
true (known) labels of each input feature set with
the predicted label for that feature set. Labels were
predicted by applying the decision function resulting
from the training phase to the segments present in
the test set. The segments were given a positive label
(‘hotspot’) if the decision function resulted in a value
> 0, and a negative label (‘non-hotspot’) otherwise
(see Alpaydin, 2004, for an extensive description of
the decision function and optimization problems
involved when using SVMs).

The instances in the true and predicted classes can
be included respectively in the rows and columns of
a confusion matrix, as displayed in Table 2. The cells
on the diagonal contain the number of correctly pre-
dicted labels (true positives and true negatives), the
errors (false positives and false negatives) are in the

Figure 4. Rescaling process applied to extracted text and speech features before feature.
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off-diagonal cells (Bird et al., 2009). We used the
correct and false predictions to calculate the classifi-
cation performance metrics accuracy, precision,
recall, and F1-score (see Table 3 for definitions) for
the positive class. Of these, accuracy and F1-score are
the most commonly used in the evaluation of super-
vised classification models, although the F1-score is
the most suitable to deal with possible class imbal-
ance. We will report all performance scores for each
class and the weighted average over both classes, in
which the performance scores of both classes are
macro-averaged (Yang, 1997) and weighted by class
size.

2.3.9. Analytical strategy
We adopted a nested k-fold cross-validation (CV)
strategy, iterating over alternating subsets of data
(folds) to train, validate, and test the model in order
to prevent model evaluation bias. In the inner loop,
a 10-fold CV grid search was conducted on the train-
ing set, calculating training performance on the vali-
dation set to find the optimal combination of (hyper)
parameter settings. In the outer loop, the selected
model was trained on the complete development set
(consisting of the training plus the validation set),
calculating the testing performance on the held-out
test set to evaluate model generalizability. We will
report on the selected parameters and features for the
model with the highest testing performance, which
was selected as the final hotspot classification model.

Because each session was split in several hotspot
and non-hotspot segments, the data set contained
multiple labelled segments per patient. To prevent
the machine learning algorithm from learning
patient-specific features instead of class-specific

features, we used Scikit-learn’s group-K-fold sam-
pling strategy in both cross-validation loops. This
strategy splits the folds in such a way that data of
the same patient will not simultaneously occur in the
training as well as the test set.

2.3.10. Parameter grid search
To find the best performing combination of para-
meter settings and features, an exhaustive grid search
guided by the F1-score was conducted in which all
possible parameter combinations (within the set
ranges) were fitted on the data set. The following
parameters and parameter values were compared:

● Stop word removal: because there is no clear
consensus on stop word removal, we included
this as a parameter in the grid search. Stop
words are either included or excluded using
the Dutch stop word list from the NLTK library.
This list includes 101 words, an overview can be
found in Appendix A.

● Minimal document frequency: we compared the
effect of only including N-grams that occurred
in at least one, two, or three separate training
segments.

● Representation schemes: we compared four
N-gram representation schemes: unigrams
(1,1), bigrams (2,2), trigrams (3,3), and 3-multi-
grams (1,3).

● Term weights: we compared weighting textual
content features by tf versus tf-idf.

● Select k best features: we compared different
cut-off points (k) for the number of features to
be included in the model based on the χ2 feature
selection metric. We compared values in the
range 10–500 (increasing with 20 features each
time) and all available features.

● Regularization parameter C: the values 1, 2, 3,
100, and 1000 were compared.

To compare the performance of text features with
that of speech features and text and speech features
combined, the complete model development pipeline,
including nested k-fold cross-validation and exhaus-
tive grid search, was run three times. This resulted in
three trained and tested models; one text only model,
one speech only model, and one multimodal model.
The model with the highest training performance was
selected as the final model.

3. Results

3.1. Sample characteristics

In total, the selected recordings contained around
6.5 h of imaginal exposure speech, of which over
2 h of ‘hotspot’ speech (mean hotspot length ≈ 3.5
min) and over 4 h of ‘non-hotspot’ speech (mean
non-hotspot length ≈ 5.5 min). Of the hotspot

Table 2. Confusion matrix to assess model performance.
Predicted class

True class Positive (CHS) Negative (CnHS)
Positive (CHS) True positive (tp) False negative (fn)
Negative (CnHS) False positive (fp) True negative (tn)

Comparison of true (rows) and predicted (columns) class labels for the
positive (hotspot) class CHS and the negative (non-hotspot) class Cn−HS.
The values on the diagonal (in boldface) show the correctly predicted
class labels.

Table 3. Performance metrics and functions.
Metric
(M) Description Function

Accuracy Proportion of correctly classified segments tpþtn
tpþfnþfpþtn

Precision Proportion of correctly identified positive
segments

tp
tpþfp

Recall Proportion of positive segments identified tp
tpþfn

F1-score Harmonic mean of precision and recall 2 � precision�recall
precisionþrecall

tp = true positives for each class, where true and predicted label are both
positive. tn = true negatives for each class, where true and predicted label
are both negative. fp = false positives for each class, where the true label is
negative but predicted label is positive. fn = false negatives for each class,
where the true label is positive but predicted label is negative.
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speech 70% is uttered by the patient, for the non-
hotspot speech this is 78%. On average, the non-
hotspot segments contain almost twice as many
speaker turns and utterances as the hotspot seg-
ments, although the high SDs show there are large
differences between segments. The number of word
types and tokens show that patients use more
unique words in non-hotspots than in hotspots,
and that patient speech has a higher pitch in hot-
spots than in non-hotspots. A summary of the main
hotspot and non-hotspot characteristics is given in
Table 4.

3.1.1. Validation splits
The total data set consisted of data of 20 patients. In
the outer loop of the nested k-fold cross-validation
process, the data set was iteratively split into 10
development and test sets. The development sets con-
sisted of the hotspot and non-hotspot segments of 18
patients (90% of the total sample), and the test sets of
the remaining 10% (two patients). An exhaustive grid
search was conducted on the development set in the
inner loop, during which the development set again
was iteratively split into 10 training and test sets,
respectively consisting of 90% (16 or 17 patients)
against 10% (two or one patients) of the development
data.

3.2. Model comparison

We developed three different models; the first model
was based only on text features, the second model used
only speech features, and the third (multimodal) model
consisted of text and speech features combined. This
section reports the mean training performance of each

model. The mean testing performance for all three
models is discussed at the end of this section under
3.3.3 Generalizability.

3.2.1. Text features only
The model-based exclusively on text features was
trained using N-grams, N-multigrams, the 96 lexicon-
based, POS, or custom tags, and the general text
characteristics included in Appendix A. The exhaus-
tive grid search resulted in a mean training F1-score
of 0.75 (SD = 0.03) for the hotspot class. This is
a good classification performance, and the low SD
shows that the grid search results are stable with little
variation over the different folds. The model with the
highest testing performance resulted in a reasonable
precision (0.60), perfect recall (1.00), high F1-score
(0.75), and a high classification accuracy (0.75). This
model consisted of N-multigrams ranging from one
to three words weighted by the tf-idf scheme. Among
the most informative features for the hotspot class are
words and word combinations such as ‘neck’, ‘terri-
ble’, and ‘no no no’. The best text model was based on
only 10 N-multigrams; general text features, lexicon-
based features and POS tags were not among the
most informative features selected by the grid search.

3.2.2. Speech features only
For the speech feature only model, 111 extracted speech
features (see Appendix B for an overview) were com-
pared in the exhaustive CV grid search. The mean
training F1-score resulting from the exhaustive grid
search was 0.62 (SD = 0.03) for the hotspot class. This
is a reasonable performance score, although lower than
that of the text only model. Like the text only model, the
low SD points to stable grid search results over the folds

Table 4. Summary of characteristics hotspots, non-hotspots, and total sample.
Characteristics Hotspots (N = 37) Non-hotspots (N = 45) Total (N = 82)

Record length, hr:min:sec 02:14:03 04:18:06 06:32:09
Mean duration, hr:min:sec 00:03:37 00:05:44 00:04:46

Speaker turns, M(SD) 24.43(21.52) 40.13(45.38) 33.05(37.23)
Utterances, M(SD) 27.22(16.71) 47.22(34.43) 38.20(29.47)
Word tokens, M(SD) 259.62(187.90) 546.69(478.98) 417.16(401.21)
Word types, M(SD) 104.11(44.79) 170.47(95.47) 140.52(83.35)
Type:Token Ratio, M(SD) 0.47(0.12) 0.42(0.16) 0.44(0.14)
Words per turn, M(SD) 16.49(13.99) 20.27(17.14) 18.57(15.82)
Word length, M(SD) 3.91(0.21) 3.95(0.17) 3.93(0.19)
Honoré’s R, M(SD) 606.31(105.95) 636.88(142.64) 623.09(127.58)
Flesch-Douma G, M(SD) 110.44(6.36) 107.46(7.73) 108.80(7.26)
Brunét’s index, M(SD) 12.40(1.73) 13.14(2.59) 12.80(2.26)
Patient speech length, hr:min:sec 01:33:52 03:21:05 04:54:58
Sounding, hr:min:sec 00:44:17 01:58:21 02:42:39
Mean duration, hr:min:sec 00:01:11 00:02:37 00:01:59

Silent, hr:min:sec 00:49:35 01:22:43 02:12:18
Mean duration, hr:min:sec 00:01:20 00:01:50 00:01:36

Pitch, M(SD) 253.24(67.86) 231.00(61.61) 241.03(65.06)
Intensity, M(SD) 60.06(5.06) 59.20(6.12) 59.58(5.65)
Speech rate, M(SD) 1.35(0.68) 1.57(0.71) 1.47(0.70)
Articulation rate, M(SD) 3.65(0.74) 3.56(0.60) 3.60(0.66)
Phonation rate, M(SD) 0.37(0.18) 0.44(0.19) 0.41(0.18)
Speech productivity, M(SD) 1.41(1.65) 1.03(0.92) 1.20(1.30)

Except for the number of speaker turns and record length, all characteristics take into account patient speech only.
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in the inner loop. The model with the highest testing
results was based on 10 speech features selected by the
grid search and had a good precision (0.75), recall
(0.75), and F1-score (0.75), and an overall classification
accuracy of 0.75. The five most informative hotspot
(marked by *) and non-hotspot features for this model
are displayed in the index graph in Figure 5. This graph
shows the change in each feature for the consecutive
hotspot and non-hotspot segments compared to the
base value of that feature at the start of the exposure
session.

3.2.3. Text and speech features combined
When using both text and speech features, the mean
training F1-score was 0.76 (SD = 0.04) for the hotspot
class. As for the speech only model, the combined
model with the highest testing performance had
a good precision (0.75), recall (0.75), and F1-score
of 0.75. The overall training accuracy of the multi-
modal model was slightly better than for the best text
only and speech only models, namely 0.78.

3.3. Final model

The multimodal model was selected as the final
model because this resulted in the highest training
F1-score for the hotspot class and overall accuracy.
This model consisted of 310 text and speech features,
where the text features were tf-idf weighted trigrams
that occurred in at least two different segments in the
training set.

3.3.1. Most informative features
Of the 50 most informative features, three are speech
features, seven are LIWC features, two are features
extracted through the NRC emotion lexicon, one is
a POS tag, one is a custom tag, one is a text statistic,
and the remaining 35 are trigrams. To illustrate the
occurrences of different feature types in both classes,
Table 5 shows a selection of 25 highly informative
features that were included in the model.

3.3.2. Confusion matrix
The confusion matrix in Table 6 shows the number of
correctly versus erroneously predicted labels for the
hotspots and non-hotspots present in the test set.
This shows that on average the model labelled three
of the four hotspots correctly, and four of the five
non-hotspots. It incorrectly labelled one hotspot as
a non-hotspot and vice versa.

3.3.3. Generalizability
The model generalization is the average testing per-
formance over all test sets in the outer loop of the
nested k-fold CV. This shows how well a model
trained and validated on the labelled input data pre-
dicts the correct output for new, future data
(Alpaydin, 2004). The testing performance for the
final (multimodal) model was lower than the training
performance (see Table 7), which means the devel-
oped model will not generalize well to new data. This
was also the case for the best performing text only
and speech only models. However, the models in
which is made use of speech features (the speech
only and text and speech features combined) seem
to be slightly more robust than the model based only
on text features. Since the text only model was based
on only 10 N-multigrams, it could be that the selected
features for the text model were too specific.

4. Discussion

The aim of this paper was to examine if it was
possible to automatically recognize hotspots in
patients undergoing a trauma-focused treatment for
PTSD. We hypothesized that a combination of text
and speech features extracted from recorded and
transcribed patient speech could be used to develop
a supervised classification model to automatically
distinguish between the hotspot and non-hotspot
phases during imaginal exposure sessions. Based on
the formal hotspot characteristics and previous
research on hotspots and CBT sessions, we identified

Figure 5. Five most informative speech features for hotspots (*) and non-hotspots.
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nine constructs that we expected to differ between
hotspots and non-hotspots. We expected that hot-
spots would contain more affect, avoidance, dissocia-
tion, fragmentation, emotions, and cognitions, and
less organization, cohesion, and complexity. These
nine constructs were operationalized through
a number of text and speech characteristics that
were captured using a large range of features
extracted from CBT session transcripts and record-
ings, as shown in Figure 2.

The results showed that text and speech features
related to these constructs could indeed be used to
train a stable model to distinguish between hotspots
and non-hotspots within the current data set. The
models consisting of text features alone or text and
speech features combined resulted in the highest
training performance. The training performance of
models based on speech features alone was lower.
However, clear fluctuations in speech features over
the hotspot and non-hotspot segments were found.
The high training performance shows that we were

able to develop a model based on text and speech
features that could classify the hotspot and non-
hotspot segments included in the current data set
very well.

The feature overview in Table 5 shows that many of
the selected features are related to the construct
Emotions (e.g. emotion categories disgust, anger, sad-
ness, and anxiety, as well as audible emotional expres-
sions such as sniffing and sighing). This was in line with
our expectations, as hotspots are considered the most
emotional moments in trauma (Nijdam et al., 2013) and
emotions are found to occur more frequently in hotspot
than in non-hotspot phases (Holmes et al., 2005).
Moreover, the strong, clearly distinguishable dictionary-
based features and audible cues that were used to capture
emotions may have benefited their recognition.

Table 5 further shows that the LIWC category
Sadness was slightly more discriminative than Sadness
captured using the NRC lexicon. This could be because
the Dutch LIWC dictionary is validated (Zijlstra, Van
Meerveld, Van Middendorp, Pennebaker, & Geenen,
2004), whereas the NRC categories were simply con-
verted to Dutch using Google Translate. However, both
Sadness categories were discriminative enough for
inclusion in the final model. The added value of the
NRC dictionary ismainly in the fact that it distinguishes
more emotional categories than LIWC, such as the
category Disgust, which is also included in the model.
Despite this extended range of emotions, two emotions

Table 5. Selection of most informative features of the multimodal classifier.
Feature χ2 P Hotspots Non-hotspots

Nee nee nee (no no no)a 23.347 0.127 4 1
Angst euh euh (fear uh uh)a 23.060 0.129 2 0
War euh war (were uh were)a 22.071 0.137 0 5
Category ‘Disgust’b 21.840 0.139 0.97 0.44
Category ‘Death’c 21.099 0.146 0.23 0.04
Pijn helemal nik (pain absolutely nothing)a 20.692 0.150 2 0
Weg vlucht euh (away flight uh)a 20.692 0.150 2 0
Zeg euh euh (say uh uh)a 20.408 0.153 0 11
Emotional expressionsd 18.663 0.172 8.02 1.71
Category ‘Negative emotions’c 17.905 0.181 2.30 1.22
Category ‘Interrogative pronoun’e 17.879 0.181 0.00 0.04
Category ‘Anger’c 17.803 0.182 0.46 0.19
Absolute word count (word tokens)e 17.498 0.186 245.85 521.12
Bang dod gan (afraid to die)a 17.443 0.187 3 0
Category ‘Sadness’c,* 17.192 0.190 0.69 0.23
Euh soort euh (uh sort uh)a 17.138 0.190 0 4
Zeg euh kom (say uh come)a 17.003 0.192 2 0
Ging ging wer (went went again)a 16.500 0.199 0 2
Category ‘Anxiety’c 16.249 0.202 0.77 0.37
Category ‘Sadness’b,* 15.045 0.220 1.80 1.05
Number of voiced unitsf 15.043 0.220 7.58 72.05
Category ‘Eating’c 15.038 0.220 0.05 0.17
Number of silent unitsf 14.569 0.227 5.79 66.95
Total duration of speechf 14.543 0.228 8.68 47.72
Category ‘Swear words’c 14.388 0.230 0.12 0.02

Twenty-five of the 50 most informative features, based on χ2 ranking. The first column shows a selection of high ranked features.
N-grams are Dutch and stemmed (hence might seem misspelled; e.g. ‘dood’ is stemmed to ‘dod’, and ‘gaan’ to ‘gan’), with
unstemmed English translations in parentheses. The remaining columns show occurrence counts and means for both classes.
Values for the class with the highest occurrence are in boldface. *Sadness is listed twice: the first is the LIWC category and
the second is the NRC emotion. aN-gram of 3 consecutive words, bEmotion feature extracted using the NRC emotion lexicon,
cLIWC feature extracted using the LIWC dictionary, dEmotional expressions extracted using custom tagger, eText statistic
extracted using Python’s TextStat package, fSpeech feature extracted using Praat.

Table 6. Confusion matrix to assess model performance.
Predicted class

True class Hotspot Non-hotspot

Hotspot 3 1
Non-hotspot 1 4

Note. Comparison of true (rows) and predicted (columns) class labels for
the hotspot and the non-hotspot class. The values on the diagonal (in
boldface) show the correctly predicted class labels.
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defined by Holmes and colleagues as characterizing for
hotspots, namely guilt and horror (the latter of which
was also an explicit PTSD criterion of the DSM-4-TR,
American Psychiatric Association, 2013), were not cov-
ered by the lexicons used. Expanding the emotion lex-
icon with dictionaries for guilt and horror might
improve classification performance.

Psychological theories explaining the working
mechanisms underlying PTSD treatments (see
Nijdam & Wittmann, 2015), state that trauma mem-
ories are represented differently than ordinary mem-
ories (e.g. lacking spatial or temporal context, or
inadequately integrated with broader memories). As
exposure aims to re-encode and restructure the
trauma memory in such a way that it no longer
evokes the feeling of current threat, successful treat-
ment should result in more integrated, cohesive, and
less fragmented trauma narratives, indicating ade-
quate processing of the trauma (Brewin, Dalgleish,
& Joseph, 1996; Ehlers & Clark, 2000; Foa &
Rothbaum, 1998). However, only a few features
related to organization, cohesion, or fragmentation
were included in the model, for example, the use of
interrogative pronouns (related to Cohesion), the
absolute word count and the frequent presence of
the speech filler ’uh’ in the selected N-grams (indica-
tors of Fragmentation), the number of voiced and
silent units, and the total duration of speech (to
capture Avoidance). This could be because for some
features, changes in opposite directions may be indi-
cative of different hotspot-related constructs (e.g. an
increased speech rate is related to Avoidance, whereas
a decreased speech rate may indicate Emotions). This
may reduce these features’ discriminative power.
Another reason could be that some hotspot charac-
teristics based on which we defined the set of con-
structs and features to be extracted, did not occur
(frequently) in our data set. For example, the change
from first to the third person, which is a clear identi-
fier for hotspots, did not take place in any of the
sessions.

The low testing performance shows that the
selected model does not generalize well to new data
sets. Since we tried to fit a complex model with

a large number of parameters to a small data set,
the low testing performance most likely indicates
overfitting (also called overtraining). This means
that the selected model has not only learned the
underlying structure but also the noise present in
the training data (Alpaydin, 2004). Another reason
for overfitting could be that the noisy audio data
impeded accurate extraction of speech features.

Several studies have shown that emotions and
mood influence speaking behaviour and speech
sound characteristics (Kuny & Stassen, 1993;
Scherer, Johnstone, & Klasmeyer, 2003). As acoustic
features can be used in detecting conditions in which
changes in speech are common (Fraser et al., 2014),
one could also expect these features to detect
moments in which changes in speech occur, such as
hotspots. Therapy session recordings and transcripts
hold a lot of information. Text and audio analysis can
help to extract and process this information in
a structured, efficient, and reproducible way.
Moreover, the collection and analysis of text and
audio data can be considered to be non-, or at least
less, obtrusive than for example questionnaire-based
research or biosignal analysis (which requires sensors
to be attached to a patient, Van Den Broek et al.,
2009). Given that lots of therapy data may already be
recorded and processed as part of the standard treat-
ment procedure, for therapist training and ongoing
research, or as part of e-health interventions (e.g.
Bourla, Mouchabac, El Hage, & Ferreri, 2018; Olff,
2015; Rizzo & Shilling, 2017; Wild et al., 2016), it is
worth exploring how these available data can be made
of further value.

It should be noted that most studies on emotion
classification and vocal affect expression are based
on clean, artificial data in which emotions are por-
trayed by actors (Juslin & Scherer, 2005) in simple
and short utterances (Cowie et al., 2001). The data
used in the current study contains raw, authentic
emotions embedded in a broader context, from
people with different backgrounds who experienced
different types of trauma, which is more in line with
the real world. As such, our data set can be con-
sidered highly ecologically valid and valuable not

Table 7. Mean testing performance.
Class Precision Recall F1-score Accuracy N(segments) in test set

Text features only
Hotspots 0.443 0.675 0.530 4
Non-hotspots 0.652 0.435 0.469 5
Weighted average/Total(N) 0.568 0.546 0.501 0.545 9

Speech features only
Hotspots 0.543 0.592 0.534 4
Non-hotspots 0.603 0.560 0.553 5
Weighted average/Total(N) 0.586 0.565 0.543 0.566 9

Multimodal (text and speech features)
Hotspots 0.464 0.617 0.525 4
Non-hotspots 0.594 0.495 0.512 5
Weighted average/Total(N) 0.543 0.556 0.522 0.555 9

Note. Per class and average performance scores for the final models.
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only for psychiatric research and practice but also
for studies on speech sounds and emotion recogni-
tion (Van Den Broek et al., 2009). However, this
strong point is also a huge limitation. Although re-
using existing data sets seems efficient and durable,
it also introduces challenges. The biggest challenge
is the background noise due to simple recording
equipment and the transitory nature of analog
recordings, which reduced the recording quality
over the years. Due to this, it was not possible to
use automated speech recognition and session con-
tent needed to be transcribed manually, which
remained impossible for small parts of the record-
ings even after noise reduction.

Another limitation is a methodological one. Because
we had such a small data set, we chose not to waste any
information by holding out a part of the data for model
testing and validation. Instead, we used nested cross-
validated grid search, a standard tool included in
Scikit-learn. This tool does not provide the option to
remove keywords with an occurrence frequency of
lower than five in the training set (which is suggested
in some studies, e.g. Manning & Schütze, 1999, to
ensure reliability of the χ2 calculation).

Despite these limitations, we developed a hotspot
classification model with high training performance,
meaning that the model could clearly distinguish
between the hotspots and non-hotspots present in
our data set. However, the low testing performance
indicates that the model will have difficulty recogniz-
ing hotspots from new input data. This is probably
due to the application of a complex training strategy
using many different features on a relatively small,
low quality, but ecologically valid data set. Another
reason could be that the patient characteristics and
trauma types present in our data set may have influ-
enced speech characteristics and word use, and as
such the features included in the model. This should
be studied in more detail on a larger data set. The
techniques used lend themselves well to the applica-
tion on larger data sets, and current audio recording
equipment makes it easier to collect and process
high-quality audio data which can be transcribed
automatically using automatic speech recognition.
This way, much larger sets of therapy session tran-
scripts and recordings can be generated. Because this
study only used text and speech features that could be
automatically extracted it is very easy to train and test
a new hotspot recognition model on new data using
the same constructs, which we expect to improve
model generalizability.

Although model performance needs to be
improved, this type of research has the potential to
advance theories about effective treatment elements
in the context of trauma treatment. The automatic
recognition of hotspots may aid in the comparison of
hotspot characteristics for different patient groups,

trauma types, or dropouts to investigate potential
mediators of treatment success as suggested by
Nijdam et al. (2013). In addition, clinicians can gain
more insight in the occurrence and characteristics of
hotspots and the way hotspots are addressed, which
might assist them in offering a more effective inter-
vention to patients that otherwise would not respond
sufficiently to treatment (Nijdam & Wittmann, 2015).

Because of the low generalizability, the current
study should merely be seen as a proof of concept,
showing the technical and practical feasibility and
possibilities of text and audio mining for research
on trauma treatment processes and mental health
research in general. Future research should focus on
applying this method to larger, higher quality data
sets before more general conclusions can be drawn.
Still we want to emphasize the added value and
potential of the used methods and data for future
research. For clinical practice, in the future this
work may benefit the patient because these types of
models can provide the therapist with (direct) auto-
mated feedback, which allows for more precise and
unobtrusive monitoring of treatment progress.
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Appendix A. Extracted text features

A.1 N-grams
N-grams were extracted to analyse differences in the
content of hotspots versus non-hotspots. N-grams are,
for example, bigrams (sequences of two words) or tri-
grams (sequences of three words), whereas
N-multigrams consist of variable-length sequences of
maximum N words (Shen, Sun, Yang, & Chen, 2006).
Contrary to unigrams, N-grams and N-multigrams can
take into account the relationship between consecutive
words and word context, which can be valuable when
analysing words with multiple meanings or when the
relationship between consecutive words changes the
meaning of a phrase, for example, in case of negation
(Bekkerman & Allan, 2003; Shen et al., 2006; Tan,
Wang, & Lee, 2002). Unigrams, bigrams, trigrams, and
N-multigrams of maximum three words were extracted
and weighted using the CountVectorizer implemented
in Scikit-learn.
A.2 Parts-of-speech (POS) tags
Many different POS tagsets exist, but almost every tagset
contains the 12 universal grammatical tags, which are
verbs, common and proper nouns, pronouns, adjectives,
adverbs, pre- and postpositions, conjunctions, determiners,
cardinal numbers, participles, ‘other’, and punctuation
(Perkins, 2014). A POS tagger is generally trained on
a training corpus that consists of POS tagged words; tokens
of the format (word, tag). We used a pre-trained
Perceptron tagger for Dutch by Van Miltenburg (2015)

based on the NLCOW14 corpus, which was tagged using
the stochastic TreeTagger by Schmid (1999), available in
Python 3. We extracted 24 POS tags that were expected to
relate to the prespecified operational constructs.
A.3 LIWC categories
Of the 66 categories included in LIWC, 23 were expected to
relate to the prespecified operational constructs. Another
11 were included as features because of their expected
relation to hotspot content (e.g. categories related to per-
ceptual processes, assent, and negation). The occurrence
frequencies for these categories were determined using the
validated Dutch dictionary developed by Zijlstra et al.
(2004).
A.4 NRC emotion lexicon
To capture emotions we used the open-source NRC
word-emotion association lexicon (also known as
EmoLex) developed by Mohammad and Turney (2010,
2013). This is a hand-coded lexicon originally annotated
for English and translated for over 20 languages using
Google Translate (July 2015) based on the assumption
that affective norms are stable across languages despite
possible cultural differences. The Dutch NRC emotion
lexicon contains associations for 7,850 words. Despite
possible errors the lexicon may contain due to incorrect
or transliteral translations, we expected features extracted
using the NRC emotion lexicon to complement the
LIWC emotion features, because it covers emotion cate-
gories not included in LIWC (e.g. disgust, trust, antici-
pation, and surprise).
A.5 Custom tags
We specified several (parts of) words and word patterns
that we expected to relate to the prespecified constructs.
Counts for all words or phrases that matched these specific
patterns were returned by the custom tagger.
A.6 Text characteristics and statistics
General text characteristics are, for example, the total num-
ber of words used (text length), the number of unique
unigrams or N-grams (lexical diversity), number of com-
plex words (words of six or more characters, Tausczik &

Table A1. N-grams.
Feature Description Construct

Unigrams Single words Content
N-grams Short phrases of N consecutive words (max

N was set to 3)
Content

N-multigrams Variable-length sequences of max N words
(max N was set to 3)

Content

Table A2. Parts-of-speech (POS) tags.
Tag Example (Dutch) Construct

Conjcoord (coordinate conjunction) And (en) Complexity, Emotions, Cognitions
Conjsubo (subordinate conjunction) As (als) Complexity, Emotions, Cognitions
Det_art (determiner article) The (de, het) Emotions, Cognitions
Det_demo (demonstrative determiner) Those (die) Cohesion
Nounpl (common noun plural) Humans (mensen) Cohesion
Nounprop (proper noun) Sudan (Soedan) Cohesion
Nounsg (common noun singular) Human (mens) Cohesion
Partte (particle) To (te) Emotions, Cognitions
Prep (preposition) At (aan) Emotions, Cognitions
Pronadv (adverbial pronoun) With that (er, daarmee) Cohesion, Emotions, Cognitions
Prondemo (demonstrative pronoun) Self (zelf) Cohesion, Emotions, Cognitions
Pronindef (indefinite pronoun) Some (sommigen) Cohesion, Emotions, Cognitions
Pronpers (personal pronoun) He (hij) Cohesion, Emotions, Cognitions
Pronposs (possessive pronoun) His, mine (zijn, mijn) Cohesion, Emotions, Cognitions
Pronquest (interrogative pronoun) Who, what (wie, wat) Cohesion, Emotions, Cognitions
Pronrefl (reflexive pronoun) ‘X’-self, each other (zich, elkaar) Cohesion, Emotions, Cognitions
Pronrel (relative pronoun) What (wat) Cohesion, Emotions, Cognitions
Verbinf (verb infinitive) To do (doen) Emotions, Dissociation, Organization
Verbpapa (verb past participle) Painted (geschilderd) Dissociation
Verbpastpl (verb past tense plural) Could (konden) Dissociation
Verbpastsg (verb past singular) Dived (dook) Dissociation
Verbpresp (verb present participle) Laughing (lachend) Emotions, Dissociation, Organization
Verbprespl (verb present tense plural) Sit (zitten) Emotions, Dissociation, Organization
Verbpressg (verb present tense singular) Sit (zit) Emotions, Dissociation, Organization

POS tag overview as published in the Dutch tagset documentation for the TreeTagger Tool developed by Helmut Schmid, Institute for
Computational Linguistics, University of Stuttgart. Retrieved from http://www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger/.
Examples adopted from Sketch Engine; https://www.sketchengine.eu/dutch-treetagger/.
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Pennebaker, 2010), number of repeated words and
bigrams, revisions, speaker turns and utterances, and sta-
tistical measures such as reading ease and grade level
indices to examine language strength.

Except for the number of complex words, which was
extracted using the LIWC tool, and Honoré’s R and
Brunét’s index, which were calculated separately as in
Fraser et al. (2014), all general and statistical text

features were extracted using Python’s Textstat pack-
age. As readability index, we only used the Dutch
Flesch-Douma measure G (Douma, 1960), an adapta-
tion of the English Flesch reading ease index (FRE;
Flesch, 1948), because the Bormuth Grade Level
(Zoellner et al., 2002) uses a standard list of familiar
words in English for which no Dutch translation is
available.

Table A3. LIWC categories.
Category Example (Dutch) Construct

Total 1st person I, we (ik, wij) Dissociation
Total 2nd person You, your (jij, jouw) Dissociation
Total 3rd person Their, she (hun, zij) Dissociation
Negations No, never (nee, nooit) Content
Assent Agree, yes (eens, ja) Content
Affect words (emo. processes) Happy, sad (blij, verdrietig) Affect, Organization
Positive emotions Thankful, brave (dankbaar, dapper) Emotions
Positive feelings Fun, love (plezier, liefde) Emotions
Optimism Proud, willpower (trots, wilskracht) Emotions
Negative emotions Hurt, hostile (gekwetst, vijandig) Emotions
Anxiety Nervous, worried (nerveus, bezorgd) Emotions, Organization
Anger Hate, threat (haat, dreiging) Emotions
Sadness Crying, grief (huilen, rouw) Emotions
Cognitive processes Cause, know (oorzaak, weten) Cognitions, Organization
Causation Because, effect (omdat, effect) Cognitions
Insight Think, consider (denk, overwegen) Cognitions
Discrepancy Should, could (zouden, kunnen) Cognitions
Inhibition Constrain, stop (beperken, stoppen) Cognitions
Tentative Maybe, perhaps (misschien, wellicht) Cognitions
Certainty Always, never (altijd, nooit) Cognitions
Perceptual processes Observing, feel (observeren, voelen) Dissociation
Time End, until (eind, totdat) Dissociation
Verbs in past tense Went, ran (ging, rende) Dissociation
Verbs in present tense Is, does (is, doet) Emotions, Dissociation, Organization
Verbs in future tense Will, going to (zal, gaan) Dissociation
Religion Pray, honour (bidden, eren) Content
Death Bury, kill (begraven, doden) Content
Physical Ill, faint (ziek, flauwvallen) Content
Body Vital, cramp (vitaal, kramp) Content
Sexual Flirt, kiss (flirten, kussen) Content
Ingestion Drink, hungry (drinken, honger) Content
Sleep Nightmare, awake (nachtmerrie, wakker) Content
Groom Shower, wash (douchen, wassen) Content
Swear words Content

LIWC categories and examples translated from Zijlstra et al. (2004).

Table A4. NRC emotion lexicon.
Category Example (Dutch) Construct

Anger Crunch, harassing (knarsen, storend) Emotions
Disgust Dank, decompose (vochtig, ontleden) Emotions
Fear Crouch, hesitation (hurken, aarzeling) Emotions, Organization
Happiness/Joy Pleased, praise (tevreden, lof) Emotions
Sadness Homesick, pity (heimwee, jammer) Emotions
Surprise Incident, pop (incident, knal) Emotions
Anticipation Hurry, importance (haasten, belang) Emotions
Trust Personal, stable (persoonlijk, stabile) Emotions
Positive sentiments Amiable, learn (beminnelijk, leren) Emotions
Negative sentiments Chilly, suffer (kil, lijden) Emotions

Emotion categories and examples derived from Dutch NRC emotion lexicon file.

22 S. WIEGERSMA ET AL.



Table A5. Custom tags.
Tag Example (Dutch) Construct

Emotional expressions sniff, sob, cry, sigh, cough (snif, snik, huil, zucht, kuch) Affect, Emotions
Additive connectives/
Conjunctions

and, also, in addition, besides, not only … but also, moreover, further (en, ook, daarbij, daarnaast, niet
alleen … maar ook, verder, voorts)

Cohesion

Comparative connectives/
conjunctions

-Comparison: like, as if, except (zoals, alsof, behalve)
-Contradiction: (even) though, although, despite, in spite of, without ((al)hoewel, ofschoon, ondanks
dat, zonder dat)

-Condition: if, in case, provided, unless (als, indien, mits, tenzij)
-Between sentences: and, or, but, neither, however, nor (en, of, maar, doch, edoch, noch)

Cohesion

Temporal connectives/
conjunctions

-Time: when, if, while, once, before, for, now, then, after, afterwards, before (wanneer, als, terwijl, zodra,
voordat, voor, nu, toen, nadat, nadien, vooraleer)

-Duration: as long as, until, since, as, according as (zolang als, totdat, sinds, sedert, naarmate,
naargelang)

Cohesion

Causal connectives/
conjunctions

Cause/effect/reason/purpose words: because, so, so … that, whereby, for, for that, therefore, that,
since, if … then, by, in case (doordat, zodat, zo … dat, waardoor, omdat, opdat, daarom, dat,
aangezien, als … dan, door, in geval)

Cohesion

Adverbial adverbs -Connecting: moreover, likewise, nor, also, besides, even, therewith
(bovendien, eveneens, evenmin, ook, tevens, zelfs, daarbij)
-Contradicting: on the other hand, nevertheless, nonetheless, however, though, on the contrary,
meanwhile, yet, now (daarentegen, des(al)niettemin, desondanks, echter, evenwel, integendeel,
intussen, nochtans, niettemin, nu, toch)

-Consequential: consequently, therefore, thus, hence, because of
(bijgevolg, derhalve, deswege, dus, dientengevolge)
-Other: at least, after all, by the way, besides, yet (althans, immers, overigens, trouwens, toch)

Cohesion

Temporal juncture ‘then’ (dan) Cohesion
Definite articles ‘the’ (de, het) Cohesion
Confusion Don’t know, don’t get it, don’t understand, don’t remember (weet (het) niet, snap(te) (het) niet,

begrij(ee)p (het) niet, herinner (me) niet, niet herinneren)
Avoidance,
Organization

Speech fillers Uh, hmm, hmm-m, so, like, but, anyway, well (dus, ofzo, enzo, zeg maar, soort van, oke, he, weet je,
toch, nou ja)

Fragmentation

Revisions Fragments: -word, word- Fragmentation
Function words Function word list for Dutch (van Wijk & Kempen, 1980) Fragmentation

Connectives and conjunctions derived from grammar overviews by online Dutch NT2 providers:
http://www.openleercentrum.com/Nederlands/Staatsexamen/STEX%201/stex%20I%20schrijven/voegwoorden.doc.

Table A6. Text characteristics and statistics.
Characteristic/Statistic Definition/Function Construct

N(words) Total number of words used (word tokens) Fragmentation
N(unique words) Number of unique words used (word types) Avoidance
Type:Token Ratio (TTR) N(word types)/N(word tokens) Avoidance, Cohesion
Words used once Words that occur only once in the text Avoidance, Complexity
N(characters) Total per phase Complexity
Mean N(characters) per word Mean word length in characters Dissociation, Complexity
N(complex words) Words of > 6 characters Complexity
N(syllables) Total syllables per phase Complexity
Mean N(syllables per word) Mean word length in syllables Complexity
Repetition Number of immediate word repetitions Organization, Fragmentation
N(unique bigrams) Number of unique bigrams used Organization, Fragmentation
Pronoun:Noun ratio (PNR) N(pronouns)/N(nouns) Cohesion
Subordinate:coordinate ratio N(conjsubo)/N(conjcoord) Complexity

Dutch Flesch-Douma G 207 −
0:93�N wordtokensð Þ=N utterancesð Þ
77�N syllablesð Þ=N wordtokensð Þ Dissociation, Complexity

Honoré’s R 100log N wordtokensð Þð Þ
1� N wordsusedonceð Þ=N wordtypesð Þð Þ Avoidance, Complexity

Brunét’s index N wordtokensð ÞN wordtypesð Þ�0:165

Avoidance, Complexity

Note. Extracted using Python’s TextStat package and LIWC.
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A.7 Stop words

Appendix B.

Extracted speech features

B.1 Pitch
The pitch is measured by the fundamental frequency
(F0). The fundamental frequency is the lowest fre-
quency of the waveform. Sounds with higher frequency
are generally perceived as having a higher pitch
(Jurafsky & Martin, 2009). For each patient utterance,
we extracted statistics related to the mean pitch
(m_pitch) and the standard deviation of pitch
(s_pitch). M_pitch is the mean pitch measured when
the patient is speaking. For each patient utterance in
a hotspot or non-hotspot segment, the mean pitch is

measured and averaged over all patient utterances in
that hotspot or non-hotspot. S_pitch is the standard
deviation of pitch measured when the patient is speak-
ing. For each patient utterance in a hotspot or non-
hotspot segment, the standard deviation of pitch is
measured and averaged over all patient utterances in
that hotspot or non-hotspot. For both m_pitch and
s_pitch, the mean, variance, min, max, and range are
calculated over all patient utterances in the segment
(hotspot or non-hotspot phase in the session) in
order to obtain one value per related statistic
per segment.

B.2 Loudness
The intensity is correlated with a sound wave’s ampli-

tude; the maximum vertical displacement from rest
(silence) to the top (crest) or bottom (trough) of the
wave, which is expressed in decibels (dB) (Lapp, 2006). In
general, sounds with higher amplitudes are perceived as
being louder (Jurafsky & Martin, 2009). Equal to the
extraction of the pitch features, we extracted m_intensity
and s_intensity and calculated their mean, variance, min,
max, and range over all patient utterances in the hotspot
and non-hotspot segments, resulting in one value per sta-
tistic per segment.

B.3 Duration
Duration covers tempo and pause. Tempo refers to the

speaking rate, which is measured as overall duration (e.g.
sound length in (mili)seconds or total duration of speaking
time (as in Fraser et al., 2014; Lamers et al., 2014), or as
units per duration (e.g. words or syllables per second
or minute) (Juslin & Scherer, 2005).

Table B3. Duration.
Feature Parameters/Function Construct

Speech rate (incl pauses) -Words per minute
-Syllables per minute
-Praat: mean, SD, min, max, range

Affect, Emotions,
Fragmentation, Avoidance

Articulation rate (excl pauses) -Words per voiced minute
-Syllables per voiced minute

Affect, Emotions, Avoidance

Phonation rate N(voiced minutes)/N(total minutes) Affect, Emotions, Avoidance
Speech productivity (pause:speech ratio) N(silent minutes)/N(voiced minutes)a Fragmentation
MLU (mean length utterance) -MLU_words

-MLU_mins
Dissociation, Organization,
Fragmentation, Complexity,
Avoidance

Silent (pause duration) Mean, SD, max, n, rate, sum Avoidance
Sounding (speech duration) Mean, SD, max, n, rate, sum Avoidance

a (Lamers et al., 2014). Extracted using Praat version 6.0.4.3.

Table A7. Stop word list.
Dutch stop words English translation

’de’, ’en’, ’van’, ’ik’, ’te’, ’dat’, ’die’, ’in’, ’een’, ’hij’, ’het’, ’niet’, ’zijn’, ’is’,
’was’, ’op’, ’aan’, ’met’, ’als’, ’voor’, ’had’, ’er’, ’maar’, ’om’, ’hem’, ’dan’,
’zou’, ’of’, ’wat’, ’mijn’, ’men’, ’dit’, ’zo’, ’door’, ’over’, ’ze’, ’zich’, ’bij’,
’ook’, ’tot’, ’je’, ’mij’, ’uit’, ’der’, ’daar’, ’haar’, ’naar’, ’heb’, ’hoe’, ’heeft’,
’hebben’, ’deze’, ’u’, ’want’, ’nog’, ’zal’, ’me’, ’zij’, ’nu’, ’ge’, ’geen’,
’omdat’, ’iets’, ’worden’, ’toch’, ’al’, ’waren’, ’veel’, ’meer’, ’doen’, ’toen’,
’moet’, ’ben’, ’zonder’, ’kan’, ’hun’, ’dus’, ’alles’, ’onder’, ’ja’, ’eens’, ’hier’,
’wie’, ’werd’, ’altijd’, ’doch’, ’wordt’, ’wezen’, ’kunnen’, ’ons’, ’zelf’,
’tegen’, ’na’, ’reeds’, ’wil’, ’kon’, ’niets’, ’uw’, ’iemand’, ’geweest’, ’andere’

’the’, ’and’, ’of’, ’I’, ’too’, ’that’, ’this’, ’in’, ’a’/’an’, ’he’, ’it’, ’not’, ’to be’, ’is’,
’was’, ’on’, ’at’, ’with’, ’if’, ’for’, ’had’, ’there’, ’but’, ’to’, ’hem’, ’then’,
’would’, ’or’, ’what’, ’mine’, ’one’, ’this’, ’so’, ’through’, ’over’, ’they’,
’them’, ’with’, ’too’, ’until’, ’you’, ’me’, ’from’, ’there’, ’her’, ’to’, ’have’,
’how’, ’has’, ’to have’, ’these’, ’you’, ’because’, ’still’, ’will’, ’me’, ’they’,
’now’, ’no’, ’because’, ’something’, ’to become’, ’still’, ’already’, ’were’,
’many’, ’more’, ’to do’, ’then’, ’have to’, ’am’, ’without’, ’can’, ’their’, ’so’,
’all’, ’under’, ’yes’, ’once’, ’here’, ’who’, ’was’, ’always’, ’but’,
’will be’, ’went’, ’could’, ’us’, ’self’, ’against’, ’after’, ’already’, ’want to’,
’could’, ’nothing’, ’your’, ’someone’, ’has been’, ’other’

Adapted from NLTK.

Table B1. Pitch.
Feature Parameters Construct

m_pitch Mean, SD, min, max, range Affect, Emotions
s_pitch Mean, SD, min, max, range Affect, Emotions

Extracted using Praat version 6.0.4.3.

Table B2. Loudness.
Feature Parameters Construct

m_intensity Mean, SD, min, max, range Affect, Emotions
s_intensity Mean, SD, min, max, range Affect, Emotions

Note. Extracted using Praat version 6.0.4.3.
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We measured speech tempo for the entire audio frag-
ment including pauses (speech rate) and for the spoken
parts only, excluding pauses and hesitations (articulation
rate) (Jacewicz, Fox, O’Neill, & Salmons, 2009). Similarly,
pauses can be silent or voiced (Roach, 2000). Voiced pauses
were covered by the lexical feature ‘speech-fillers’, silent
pauses were captured automatically using Praat’s silence
detection function, with the minimal silence duration set
at 500 ms, as in Lamers et al. (2014). We extracted mean,
SD, min, max, and rate for the duration of silences (pauses)
and speaking time in Praat. Based on these values, we
calculated phonation rate, speech productivity, and vari-
ables related to speech tempo.
B.4 Spectral features
Spectral features are frequency-based features that repre-
sent the different frequencies (called ‘spectrum’) that
together make up the acoustic waveform (Jurafsky &
Martin, 2009). These features were extracted at the frame
level, over frames with a window length of 0.015 s and time
steps of 0.005 s. We extracted 12 Mel-frequency cepstral
coefficients (MFCCs) and calculated mean and variance
over all frames. The MFCCs jointly form a mel-frequency
cepstrum, which represents a sound’s short-term power
spectrum (Iliou & Anagnostopoulos, 2010), see Logan
(2000) for more on MFCC features.
B.5 Voice quality features
Perceived voice quality is measured by high-frequency
energy (HF), which is the relative proportion of energy in
an acoustic signal above versus below a specific frequency,
and formant frequencies (Juslin & Scherer, 2005). We used
a common cut-off frequency of 500 Hz for the high-
frequency energy, extracting mean and variance for HF
500. For the formant frequencies, we extracted the mean
and precision of the first formant (F1), as commonly used.

B.6 Turn statistics
Turn statistics are general, overall speech features for each
hotspot and non-hotspot phase, such as the number of
speaker turns, turn length, and the number of utterances.

Appendix C.
Operationalization of hotspot constructs

C.1 Affect
To capture the construct affect, we adopted voice cues
commonly used in studies of vocal affect, which are pitch,
loudness, voice quality, and duration (Juslin & Scherer,
2005). In addition, we used lexicon-based features
(LIWC) to assess the occurrence of affect words and cus-
tom tags for the occurrence of audible emotional expres-
sions (e.g. sniffing, sighing).
C.2 Emotions
We assessed emotions through the use of emotion words,
captured through lexicon-based features related to emotion
(LIWC and NRC emotion lexicon), and audible emotional
expressions. Although the LIWC and NRC categories do
not completely cover the emotions found to relate most to
hotspots (e.g. guilt and horror are not included in either of
the lexicons, see Appendix A, we still expect the available
emotion categories to provide additional information on
the emotions present in hotspot moments. Emotions can
additionally be represented by other textual features, such
as an increased use of the present tense (Hellawell &
Brewin, 2004; Pillemer, Desrochers, & Ebanks, 1998) and
particles (Pennebaker et al., 2003), which we respectively
measured through lexicon-based features and POS tags
related to verb tense and particles (e.g. pronouns, articles,
prepositions, conjunctives).

Apart from text features, speech features can also be
expected to differ among emotions. For example, fundamental
frequency and voice intensity (related to pitch and loudness,
respectively) are found to be higher for the emotions anger,
fear, and stress, and lower for sadness (Juslin & Scherer, 2005).
We adopted prosodic features related to pitch, loudness, and
duration, and spectral and voice quality features, as these are
used in several studies related to emotion, such as the phonetic
description of emotional speech (Roach, 2000), emotion detec-
tion (Cowie et al., 2001; Shen, Changjun, & Chen, 2011;
Ververidis & Kotropoulos, 2006), and the measurement of
emotional distress (Van Den Broek et al., 2009).
C.3 Cognitions
We operationalized cognitive themes through lexicon-
based features (LIWC) related to cognitive processes. As
for emotions, not all cognitive themes as defined by

Table B6. Turn statistics.
Feature Parameters Construct

N(speaker
turns)

Total number of speaker turns General

Turn length Mean length of speaker turn (in words
and minutes)

Complexity

N(utterances) Total number of patient utterances, split
by silences > 1 sec

Dissociation

Extracted using Praat version 6.0.4.3.

Table B4. Spectral features.
Feature Parameters Construct

m_MFCC1 − 12 Mean, SD Emotions
s_MFCC1 − 12 Mean, SD Emotions

Extracted using Praat version 6.0.4.3.
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Holmes et al. (2005) are covered by the cognitive categories
included in LIWC. Still we expect to gain extra information
from the lexicon-based features that are available. For
example, the categories ‘causation’ and ‘insight’ might
relate to the cognitive theme consequences, and the cate-
gories ‘tentative’ and ‘inhibition’ to the theme uncertain
threat (see overview of extracted cognitions in Appendix
A). Moreover, as for emotional state, the POS tag ‘particle’
can be indicative of one’s cognitive style (Pennebaker et al.,
2003).
C.4 Dissociation
We adopted lexicon-based features (LIWC) and POS tags
to capture the change in personal pronouns and verb tense
associated with dissociation. Following Zoellner et al.
(2002), who studied indications for peritraumatic dissocia-
tion in trauma narratives, general text characteristics
related to narrative structure (characters per word, words
per sentence, the total number of sentences, and several
reading indices) were also used.
C.5 Avoidance
We operationalized avoidance through audio statistics
related to duration (tempo and pauses), text statistics
related to the extensity of descriptions (verbosity) and
lexical diversity (also termed vocabulary richness) such as
Type:Token Ratio (TTR), Honoré’s R, Brunét’s index, as in
Fraser et al. (2014), and custom tags that indicate
confusion.
C.6 Cohesion
We operationalized cohesion through custom tags con-
cerning the use of connectives and conjunctions (as in
O’Kearney et al., 2011; O’Kearny et al., 2007), and the
temporal juncture ‘then’ to measure the temporal sequence
of spoken clauses (based on Shaw et al., 2001). According
to Shaw and colleagues, use of this temporal juncture by
PTSD patients indicates that the patient is closer to re-
experiencing a narrated memory with high emotional
involvement. Following Crossley et al. (2016), we also
used the pronoun:noun ratio (PNR, calculated based on
POS tags for nouns and pronouns), the occurrence of
demonstratives (captured using POS tags), and definite
articles (captured using a customized tag set) to gauge the
amount of information given in the text (referred to as
‘givenness’). Finally, the general text statistic Type:Token
Ratio (TTR), an indicator of word repetition across a text,
was adopted to assess overall text cohesion.
C.7 Organization
Jelinek et al. (2010) studied (dis)organization by counting
the number of words indicative of cognitive processes,
words related to affection and anxiety, and words in the
present tense (captured through lexicon-based text features
and POS tags). They also used unfinished thoughts (based
on Foa et al., 1995) and the ‘total disorganization score’
introduced by Halligan et al. (2003), which is calculated
based on the occurrence of repetitions, disorganized
thoughts and organized thoughts.

Repetitions are captured by counting the number of
direct word repetitions (Croisile et al., 1996; De Lira,
Ortiz, Campanha, Bertolucci, & Minett, 2011) and the
number of unique bigrams, which is indicative of repeated
bigram patterns (Orimaye et al., 2014). Disorganized
thoughts, which consist of utterances implying confusion
such as ‘I don’t remember’ or ‘I don’t know’ (Foa et al.,

1995) are captured through custom tags, and structural
organization of sentences is measured by the Mean
Length of Utterance (MLU, as in Orimaye et al., 2014).
C.8 Fragmentation
Previous studies assessed fragmentation by coding repeti-
tions, unfinished thoughts, and speech fillers (Foa et al.,
1995; Römisch, Leban, Habermas, & Döll-Hentschker,
2014). Of these, we included repetitions (captured as for
the construct Organization) and speech fillers (or filled
pauses, Fraser et al., 2014, captured using custom tags for
e.g. ‘uh’ or ‘hmm’), since these could be automatically
extracted from the data.

Another commonly used indicator for fragmentation is
(dis)fluency, because this is a direct and homogeneous
measure (Römisch et al., 2014). Speech fluency was found
to be inversely related to PTSD symptoms (e.g. Gil, Calev,
Greenberg, Kugelmass, & Lerer, 1990; Uddo, Vasterling,
Brailey, & Sutker, 1993). Examples of speech disfluencies
are repetitions, repairs, filled pauses, and false starts
(Shriberg, 2001). To measure speech fluency we used the
speech features speech rate and speech productivity and the
text feature audible struggle, which were found by Park
et al. (2011) to be the most discriminative features for
fluency. To capture audible struggle we used custom tags
for revisions (based on Croisile et al., 1996; De Lira et al.,
2011; Orimaye et al., 2014). Revisions are moments in
which the patient retraces and corrects a preceding error,
which is extracted from speech transcripts by counting
transcribed fragments. Fragments in this context are
words that are broken off in the middle. In speech tran-
scripts, fragments are generally represented using ‘-‘, e.g.
word- or -word (Jurafsky & Martin, 2009).

Finally, we used the total number of words produced (as
in Fraser et al., 2014), because fragmented speech may be
characterized by the use of short, less meaningful, or frag-
mented phrases and single words, and the total number of
function words. Function words are the words that give
meaning to a text (Orimaye et al., 2014). Their occurrence
was counted using a standard Dutch function words list
(first published by van Wijk & Kempen, 1980).
C.9 Complexity
We operationalized complexity through text characteris-
tics related to reading indices, narrative structure, and
syntactic processing complexity. Although the use of read-
ability indices to capture text comprehensibility is not
undisputed, many different reading indices exist and are
used in scientific studies. Amir et al. (1998) for example,
used the Flesch Reading Ease Index (FRE; Flesch, 1948)
and the Flesch–Kincaid Grade Level (FKGL; Kincaid,
Fishburne, Rogers, & Chissom, 1975) to capture narrative
articulation (i.e., comprehensibility, complexity), whereas
Zoellner et al. (2002) used the Bormuth Readability Index
(Bormuth, 1969). To gauge narrative structure and syn-
tactic processing complexity, we used general text char-
acteristics such as mean word and sentence length,
number of syllables and complex words, and the number
and ratio of coordinated and subordinated conjunctions
(captured through POS tags, see De Lira et al., 2011;
Fraser et al., 2014). Finally, the total number of utterances
and the mean number of words per utterance were also
adopted as measures for language strength and verbosity
(as in Orimaye et al., 2014).
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